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RESUMO

O presente trabalho aborda a aplicagio do Método dos Elementos Finitos, uma
ferramenta de simulagfio matematica, em trés exemplos de ensaios de tragdo retirados da
literatura. Para isso, utilizou-se o software COSMOSM™ — Geostar 256K — versdo 2.9.
Foram analisados diferentes tipos de modelos, variando a geometria, a caracteristica do
material e o refino da malha, em ordem crescente de complexidade. A distribuigiio de
tensdes e deformagdes no corpo de prova foi estudada até a carga maxima, regido de
validade dos modelos. Foi possivel analisar qualitativamente a influéncia de
imperfei¢des do material, mostrando a concentragdo de tensdes na regifio da inclusdo ou
porosidade. Uma estimativa do afinamento do corpo de prova também é apresentada,
usando informagdes de anisotropia do material como base. Os resultados obtidos
mostram a validade dos modelos, e servem como ponto de partida para diversos estudos

em Mecanica e Conformagio dos Materiais.



ABSTRACT

This report approaches the Finite Elements Method application, a mathematical
simulation tool, in three tensile testing samples from literature. For that, the software
COSMOSMTM, Geostar 256K — 2.9 version, was used. Different models were analyzed,
varying the geometry, the characteristic of the material and the mesh refine, in
increasing complexity order. The stress and strain distributions in the test specimen
were studied up to the maximum load, where the model validation is confirmed. It was
possible to analyze the qualitative influence of the material imperfections, showing the
stress concentration in the area of the inclusion or porosity. An estimate of the test
specimen thinning is also presented, based on the material anisotropy. The results show

the models validity, and they serve as starting point for several studies in Mechanic and

Forming of Materials.
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1 INTRODUCAO

Atualmente, o uso de ferramentas de simulagfio numérica tem se ampliado na
industria em geral, com o objetivo de otimizar o projeto do produto ainda na fase
inicial e de reduzir o tempo de introdugdo do produto no mercado. No meio
académico, além do suporte a tecnologia da industria, as ferramentas de simulagdo
podem atuar como fortes aliados no entendimento de conceitos. Nesse sentido, o
Meétodo dos Elementos Finitos (FEM) ¢ uma poderosa ferramenta de trabalho para o
engenheiro.

O ensaio de tragdo é um dos testes mecanicos mais comuns. E utilizado na
selegdo de materiais e na determinagfo de propriedades mecénicas importantes para
aplicagdes de engenharia. Freqiientemente as propriedades de tragdo sdo utilizadas
também na previsio do comportamento de materiais solicitados de maneira nio
uniaxial.'

Neste trabalho foram implementados modelos de simulagdo de trés exemplos
de ensaios de tragdo de metais e ligas metalicas retirados da literatura, utilizando o
FEM. Através da comparagdo dos resultados de simulagdo foi possivel avaliar a
validade desses modelos.

Os modelos foram implementados em ordem crescente de dificuldade,
procurando contribuir de forma didética para trabalhos subseqiientes que sejam
realizados. Foram modelos simples, e foram analisados aspectos basicos que servem
de base para outros trabalhos na area de simulagdo.

De maneira qualitativa também foi avaliada a influéncia de imperfei¢des na
distribuicdo de tensSes no material e as deformagdes ao longo do corpo de prova.
Uma estimativa do afinamento de um corpo de prova, ponto de partida para estudos

de estampabilidade, também foi realizada.



2 METODO DOS ELEMENTOS FINITOS (FEM — FINITE ELEMENTS
METHOD)

2.1 Histdrico

A evidente complexidade do mundo que nos cerca torna natural a forma de
proceder de engenheiros, cientistas e outros profissionais, que aplicam o processo de
andlise do método cientifico de abordagem de problemas, separando os sistemas em
componentes bésicos (elementos). Assim, pode-se estudar o comportamento dos
elementos, que € mais simples, e depois sintetizar as solugdes parciais para o estudo
do sistema global.

Com a evolugdo dos computadores digitais, os problemas discretos podem ser
resolvidos geralmente sem dificuldades, mesmo que o numero de elementos seja
muito elevado. Entretanto, como a capacidade dos computadores é finita, os
problemas continuos (que geralmente exigem o uso da defini¢io matematica de
infinitésimo) s6 podem ser resolvidos de forma precisa com o uso da matematica.

Dessa forma, os engenheiros procuram abordar problemas de maneira mais
intuitiva, estabelecendo analogias entre os elementos discretos reais e porgdes finitas
de um dominio continuo.

E dificil precisar o inicio dos estudos do Método dos Elementos Finitos.
Contudo, pode-se dizer que advém do estudo da analise de estruturas, a partir de
1875, quando utilizava-se o processo de analise aproximada de treligas e porticos
baseada na distribuigdo de tensdes, com forgas como incognitas. Por volta de 1920,
depois de um lento desenvolvimento, em fungfo dos trabalhos de Maney (EUA) e de
Ostenfeld (Dinamarca), passou-se a utilizar a idéia basica de andlise aproximada de
treligas e porticos baseada nos deslocamentos como incognitas. Estas idéias sdo as
precursoras do conceito de anélise matricial de estruturas, em uso hoje em dia.

No comego de 1940, McHenry, Hrenikoff ¢ Newmark demonstraram — no
campo da mecénica dos sélidos — que podiam ser obtidas solugdes razoavelmente
boas de um problema continuo, substituindo-se pequenas por¢des do continuo por
uma distribuigdo de barras elésticas simples.” E dessa época a origem do FEM para a

maioria dos matematicos, associada ao apéndice de um artigo de Courant’, onde sdo



discutidas aproximagdes lineares continuas por parte do problema de Dirichlet em
um dominio usando tridngulos.

Para a engenharia, duas publicagGes notaveis podem ser consideradas marcos
no estudo do FEM: foram os trabalhos de Argyris & Kelsey e de Turner, Clough,
Martin & Topp. Tais publicagdes uniram os conceitos de analise estrutural e analise
do continuo, ¢ langaram os procedimentos resultantes na forma matricial (o que foi
possibilitado pelo surgimento dos computadores digitais por volta de 1950). Elas
representaram uma influéncia preponderante no desenvolvimento do FEM nos anos
subseqiientes. Assim, as equagdes de rigidez passaram a ser escritas em notagdo
matricial e resolvidas em computadores digitais. A publicagdo classica de Turner et
alli é de 1956.* Com estas e com outras publica¢des um desenvolvimento explosivo
do FEM aconteceu.

O trabalho de Courant representa o FEM como se conhece hoje em dia, mas
havia sido esquecido até que engenheiros, independentemente, o desenvolveram.

O nome Elementos Finitos, que identifica o uso preciso da metodologia geral
aplicavel a sistemas discretos, foi dado em 1960 por Clough.’

Dai em diante, a década de 60 serviu para divulgar este novo método, ao
mesmo tempo em que a comunidade reconheceu sua potencialidade.

Este periodo foi seguido por um intensivo desenvolvimento de programas
computacionais para colocar as potencialidades do FEM ao alcance dos usudrios.

Atualmente, hd dezenas de programas computacionais (ABAQUS, ADINA,
ALGOR, ANSYS, COSMOSM, MARC, NASTRAN, NONSAP, PATRAN, SINDA,
TEAP, TEXGAP etc.) comerciais de uso corrente em diversas dareas do

conhecimento que utilizam esse método para analises linear e nio-linear.®

2.2 Aplicacdes

O Meétodo dos Elementos Finitos é seguramente o processo que mais tem sido
usado para a discretizagdo de meios continuos. A sua larga utilizagio se deve
também ao fato de poder ser aplicado, além dos problemas classicos da mecanica
estrutural elastico-linear — para os quais foi o método inicialmente desenvolvido —,

também para problemas tais como:



o problemas ndo lineares, estaticos ou dindmicos;

o mecdnica dos sdlidos;

o mecénica dos fluidos;

o eletromagnetismo;

o transmissio de calor;

o filtragdo de meios porosos;

o campo elétrico;

o acustica; etc.

Além disso, pode-se afirmar também que o FEM ¢é muito utilizado face a

analogia fisica direta que se estabelece, com o seu emprego, entre o sistema fisico

real (a estrutura em anélise) e 0 modelo (malha de elementos finitos).’

2.3 Modelamento Matematico

O FEM envolve o modelamento de uma estrutura qualquer, empregando
elementos interconectados (elementos finitos).

Para problemas que envolvam complexas geometrias, carregamentos,
propriedades dos materiais, normalmente nio ¢é possivel obtermos solugdes
matematicas analiticas (que podem envolver equages diferenciais parciais), as quais
podem se tornar muito complexas ou, até, impossiveis de solucionar, devido a
geometria, carregamento ou propriedades dos materiais envolvidos.

Assim, métodos numéricos, como o FEM, podem trazer solugdes
aproximadas aceitdveis. Da formulagio do FEM, resulta um sistema de equagdes
algébricas simultineas, em vez de equagdes diferenciais. Do método numérico

obtemos valores aproximados das grandezas, em pontos discretos do continuo.®

2.4 Vantagens e Limita¢des

Como todo método numérico, o FEM apresenta também estes dois aspectos, a

saber:’



Vantagens: possibilidade de modelar corpos irregulares; aplicar diferentes
carregamentos; modelar corpos compostos de diferentes materiais; aplicar diferentes
tipos de condi¢des de carregamento; variar os tamanhos dos elementos; efetuar
alteragdes no modelo de maneira rapida e eficiente; aceitar o comportamento nio-
linear existente em deformagdes de sistemas que empregam materiais nio-lineares.

LimitagGes: obtém-se uma solugdo numérica para um problema especifico, ndo
fornecendo, portanto, solugdes que permitam um estudo analitico dos efeitos através

da variagdo dos pardmetros envolvidos.

3 SIMULACAO MATEMATICA

3.1 Software COSMOSM™

Produzido pela SRAC™ (Structural Research and Analysis Corporation, Santa
Ménica - Califérnia) o software COSMOSM™ um dos pacotes de analise mais
abrangentes e sofisticados. O COSMOSM™ ¢ um sistema modular executado em
plataformas Windows® que oferece uma enorme variedade de recursos de anilise,
incluindo modelamento, malhas e visualizagdo de pecas e, como também inameros
recursos avangados de andlise, sendo um bom representante dos programas que
utilizam o Método dos Elementos Finitos para anélises das mais diversas estruturas.

Com mais de 15.000 bases instaladas em todo o mundo, o0 COSMOSM™ ¢
reconhecido internacionalmente (Nasa, Boeing, Kodak, Ford, GM, HP, IBM, etc.) e
também em nosso pais (USP, ITA, Petrobras, EMBRAER, IPT, UFRJ, Furnas,
White Martins, etc.) como poderosa ferramenta de analise em elementos finitos
utilizando microcomputadores.

O COSMOSM™ permite a realizagio de andlises estatica e dinimica de
estruturas reticuladas planas e espaciais (vigas, treligas, grelhas, porticos), analise de
placas, cascas, estruturas tridimensionais, anélises térmicas, anélises de fadiga, etc.
Ele apresenta os seguintes recursos e vantagens:

o Ajustdvel as necessidades do usuédrio. Ele possui vérios pacotes e

opgdes de configuragdo, de forma que o usuario s6 paga pelos recursos



necessarios (analise estitica linear, freqiiéncia e flambagem, analise
térmica e de casca, recursos para conjuntos, anilise nio-linear e de
fadiga).

Recursos abrangentes de andlise de tensfo. Os recursos e a biblioteca
ampla de elementos 1D, 2D e 3D do COSMOSM™ garantem suporte a
materiais com propriedades que dependem de temperatura, bem como a
materiais isotropicos, ortotrépicos, anisotrépicos € compdsitos em
camadas multiplas. Os recursos incluem contatos lineares e de
espagamento, enrijecimento por tensdo, subestruturagfio, restrigdes em
vdrios pontos, equagdes de restri¢do, entre outros.

Ferramentas extensivas de analise térmica. O COSMOSM™ pode
resolver a avaliagdo da transferéncia de calor derivada de condug3o,
inclusive com condigdes de limite de radiagio e convecgdo, para
materiais com propriedades dependentes de temperatura, bem como
materiais isotrépicos, ortotropicos e compoésitos. Os recursos incluem
transferéncia de calor transiente com condi¢8es de limite que variam de
acordo com o tempo e estado de imobilidade, taxas de geracdo de calor
e coeficiente de convecgdo que dependem de temperatura, além de
outros.

Anilise néo-linear avangada. O COSMOSM™ ¢ a solugdo ideal para
problemas que apresentam linearidades ndo-geométricas, materiais e/ou
de espagamento e contato, em ambientes estiticos ou dindmicos. As
aplicagbes  incluem: carregamento limitado, pds-flambagem,
plasticidade, materiais emborrachados, testes de queda e assim por

diante.

O programa € oferecido em diferentes modulos que podem ser acoplados ao

sistema basico (gerag#io, pré e pos-processador e estatico), como por exemplo:

o]

o

o]

A (Astar) — Dindmico Avangado;
N (Nstar) — Ndo-Linear;

H (Hstar) — Térmico;

E (Estar) — Eletromagnético;

F (Fstar) — Fadiga;



o Flow (Flowstar) — Fluxo de fluidos;
o Geostar — Mddulo pré e pds-processador;
o Optstar — Otimizag8o de projetos.
Neste trabalho, foi utilizado o COSMOSM™ versdo 2.9 (2004), através do pré
e pos-processador Geostar256K. E neste modulo onde sdo implementados o modelo
geométrico (empregando as ferramentas associadas i geragdo de pontos, linhas,
superficies e volumes), as malhas, as cargas ou deslocamentos e as condi¢des de
contorno, bem como a analise do conjunto. Neste instante, ativa-se o médulo de
andlise (linear ou ndo-linear) requerido, saindo do Geostar. Ap6s o éxito da analise, o
programa retorna automaticamente ao Geostar para o necesséario pos-processamento,
onde sdo feitas as andlises dos resultados, inclusive de forma grafica.
Outras informagdes sobre o programa COSMOSM™ podem ser encontradas

na pagina do software na internet.'®"!

O cddigo do COSMOSM™ ¢ uma linguagem de notagdes seqiienciais
mnemdnicas, através da qual se pode descrever o processo computacional.'?

O conjunto de comandos ird providenciar a interagdo com o programa,
possibilitando ao usuirio uma maneira simples, quase intuitiva da montagem do

problema, bem como da analise dos resultados obtidos.

A seguir serdo descritos os exemplos que foram estudados neste trabalho.

4 EXEMPLO1Y

Este primeiro exemplo analisado foi baseado no exercicio que se encontra na
seguinte referéncia: “Ensaios Mecénicos de Materiais Metalicos — Fundamentos
Tedricos e Praticos”, Sérgio Augusto de Souza, Ed. Edgarg Bliicher, 5° ed., 1982,
p.262-264.

A solugio completa estd descrita no Anexo, no fim deste trabalho. A seguir

sdo abordados os aspectos mais relevantes para a simulagfo propriamente.



4.1 Problema e Dados

Este exemplo foi escolhido pois retrata com rigor a parte elastica de um ensaio
de tragdo, ja que realiza o ensaio de tragdo em uma barra de ago para construgdo civil
para a determinagdo do Limite Convencional de Escoamento 0,2%.

Entre os dados fornecidos pelo problema e obtidos pela solugfio, foram
destacados os mais relevantes para a simulagéo:

o Comprimento Util (Extens6metro), L, = 200 mm,;
o Areada Secdo Média da Barra, S, = 282,62 mm?,
o Limite de Escoamento, 6 29 = 59,1 kgf/mm?;

o Moddulo de Elasticidade, E = 21070,7 kgf/mm>.

Os procedimentos de calculo dos pardmetros anteriores estio descritos no
Anexo. No anexo também estdi a Tabela 9 com os resultados de Forga e

Deslocamento do Ensaio e o respectivo grafico (figura 44).

4.2 Matriz de Rigidez

Antes de implementar os modelos de simulagio matematica, segue neste item
uma breve anilise do conceito basico dos célculos envolvidos nas simulagdes por
Elementos Finitos.

No estudo do comportamento eldstico dos metais, é de fundamental
importéncia para projetos de engenharia a relagio de proporcionalidade entre a
deformagdo e a carga aplicada, conhecida como Lei de Hooke.!* Uma barra uniforme
de comprimento L, 4rea da se¢io A ¢ modulo de elasticidade E pode ser modelada

como uma mola linear de rigidez k., (figura 1).



Figura 1 - Modelo eldstico de uma barra uniforme

Dessa forma, a relagdo entre a forga nos nds e os deslocamentos pode ser

representada como na figura 2 a seguir.

t= I\‘(ut_—u].)
fj:l\'(uj—u,.)

O ad
£ M]A AV_"* f

Figura 2 - Relagfio entre forca ¢ deslocamento

Pode-se escrever essas equagdes na forma matricial:
| S | i | | /‘-t. |
—k Kk |..” ; | l..fi |

ou simplesmente:
ku=f
onde, k ¢ a matriz de rigidez do elemento; u é o vetor de deslocamento do
elemento; f € o vetor de forga do elemento.
Estendendo o raciocinio para varios elementos de barra, de maneira analoga
pode-se encontrar uma equagdio matricial para o sistema, ou, mais simplesmente,

descrever o sistema global como: K.U = F. Entretanto, mesmo o sistema de um
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elemento ndo tem solugdo se ndo forem implementadas condigdes de contorno
adequadas.

Para o exemplo estudado, implementou-se o modelo estrutural mostrado na
figura 3, composto por 3 elementos de rigidez ki, k; e kj, respectivamente, cujos
deslocamentos uy, uy, u3 € uy sdo provocados pela forga F.

7 F
us 4 4

4
k3
Ugi 3
ko Lo =200 mm
w4 2
ki
U1=U_t . 1 v

P
S0 =282,62 mm?

Figura 3 - Modelo Elastico do Exemplo Estudade

A matriz de rigidez dos elementos 1, 2 e 3 fica:

k1 -k1 0 0
k1= -k1 k1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
k2= 0 k2 -k2 0
0 -k2 k2 0
0 0 0 0
0 0 0 0
k1= 0 0 0 0
0 0 k3 -k3
0 0 -k3 k3

A matriz de rigidez global, resulta: k = k1 + k2 + k3.
Assim, a matriz de rigidez, o vetor de deslocamento e o vetor de forga globais

para o exemplo sdo:



k1
-k1

Uy
U

Uy

&1
k1 +k2

As condiges de contorno para o problema sdo:

11

1) O médulo de rigidez dos elementos 1, 2 e 3 deve ser a mesmo, pois a barra

deve ser tratada como uniforme, Dai:
ki=kz=ks=k=(S, xE)/ (Ls/3)
Calculando, tem-se que k = 89325 kegf/mm.

2) Como a segdo inferior da barra estd engastada, o deslocamento u; = 0, e

assim pode-se cancelar a linha e a coluna associados a u;:

¢

ki

-H:1 k1 + k2
-k2

0

k2 + k3

-k3

Resolvendo o sistema, tem-se:

2k
-k
0

178650
-89325

Uy
Uz
Uy

-k
2k
-K

-89325
178650
-89325

——
0
-k3
k3
0
-k
k
0
-89325
89325

U
U
Uy

Uz
Us

1,11951E-05 1,12E-05 1,12E-05
1,11951E-05 2,24E-05 2,24E-05
1,11951E-05 2,24E-05 3,36E-05

o

(=]

0
0
F

Entrando com os valores da forga F fornecidos pelo exemplo (Tabela 1), pode-

se encontrar o valor de u4, sendo que us = ug, que é o deslocamento medido pelo
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extensOmetro para cada forga. A tabela 1 abaixo mostra os valores obtidos para us e
compara com os valores da literatura (do exemplo). Os resultados para a parte

eldstica estdo em negrito, destacando a regifio de validade do modelo.

Tabela 1 - Comparagfio: Matriz de Rigidez x Literatura

n Forgca | Desloc. ngg:: edze
(kgf) (mm) Desloc. (mm)
0 0 0 0,000
1 1490 0,050 0,050
2 3000 0,100 0,101
3 4420 0,150 0,148
4 5920 0,200 0,199
5 7450 0,250 0,250
6 8900 0,300 0,299
7 10350 0,350 0,348
8 11900 0,400 0,400
9 12800 0,450 0,43
10 13750 0,500 0,46
11 14400 0,550 0,48
12 15000 0,600 0,50
13 15360 0,650 0,52
14 15700 0,700 0,53
15 16100 0,750 0,54
16 16240 0,800 0,55
17 16500 0,850 0,55
18 16600 0,900 0,56
19 16700 0,950 0,56
20 16800 1,000 0,56
21 16820 1,050 0,56
22 16850 1,100 0,57
23 16900 1,150 0,57
24 17050 1,200 0,57

O respectivo grafico de comparagéio € mostrado na figura 4 a seguir. Pode-se

verificar que o método funciona com exatid4o para a regifio elastica.
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For¢a x Deslocamento

14000 e

nl
v
12000 y ol

|

10000 .1

8000 /ﬁ/

Ff

Forga (kgf)

6000 »

0w T T T T T
0 0.2 04 0.6 038 1 1.2

Deslocamento (mm)

N —+— Literatura Matriz de Rigidez \

Figura 4- Comparagio: Matriz de Rigidez x Literatura

4.3 Complexidades Estudadas

Os modelos que foram implementados na seqiiéncia deste trabalho podem ser

classificados por suas diferentes complexidades quanto a:

A) Geometria do Modelo do Corpo de Prova:

A.i) Paralelepipedo Equivalente;

A.ii) Axissimétrico.
B) Caracteristica do Material:

B.i) Linear — Analise Estética;

B.ii) Bilinear — Andlise Nio Linear;

B.iii) MPC (Material Property Curve) — Analise Ndo Linear.
C) Malha:

C.i) Simples;

C.ii) Média;

C.iii) Refinada.
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No inicio de cada modelo estdo indicados os tipos de complexidades utilizadas.

Foram implementados em ordem crescente de complexidade.

4.4 Modelos

4.4.1 Paralelepipedo Equivalente — Linear (Andlise Estdtica) — Simples

a) Linhas de Comando — Cédigo do Programa

C*

C* tracao_livro_ensaios mecanicos_3.ses

C* MUDA A VISAO

VIEW,0,0,1,0

C* GEOMETRIA DA PECA

PT,1,0,0,0

PT,2,18.97,0,0

PT,3,18.97,200,0

PT,4,0,200,0

C* MUDA A ESCALA

SCALE,.25

C* FAZ A SUPERFICIE DO MODELO

SF4PT,1,1,2,3,4,0

C* CRIA A MALHA

M_SF,1,1,1,4,3,3,1,1

C* UNE NOS COINCIDENTES

NMERGE, 1,30,1,0.1,0,0,0

C* DEFINE AS PROPRIEDADES DO ELEMENTO

EGROUP,1,PLANE2D,0,1,0,0,0,0,0,0

C* DEFINE AS PROPRIEDADES DO MATERIAL

C* EX E O MODULO DE ELASTICIDADE, NUXY E O COEFICIENTE DE
POISSON E SIGYLD E O LIMITE DE ESCOAMENTO
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MPROP,1,EX,21070.7,NUXY,0.33,SIGYLD,59.1
C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO,
A ESPESSURA
RCONST,1,1,1,2,14.90,0
C* CRIA UM ENGASTAMENTO
DCR,1,AL,0,1,1
C* DEFINE O DESLOCAMENTO ANALISADO
DND,13,UY,0.300,16,1,
C* CONTROLES DE PROCESSAMENTO
TIMES,0,1,.1
CURDEF,TIME, 1,1,0,0,1,1
A_STATIC,N,0,0,1E-006,1E+010,0,0,0,0,0,0,0,0,0,0,0
C* ANALISE ESTATICA
C*R_STATIC

“C*” significa que se trata de um comentério
gn q

b) Modelo do Corpo de Prova (figura 5)

Utilizou-se um modelo de paralelepipedo equivalente ao cilindro em questfo.
Para isso, foi mantido o volume do cilindro, conservando sua altura e a area da se¢do
transversal. O valor do didmetro foi usado para a largura (w = 18,97 mm) e calculou-
se a espessura (t = 14,90 mm) necesséria para manter a 4rea constante.

O corpo de prova foi dividido em 9 elementos, recebeu um engastamento na

secdo inferior e os deslocamentos na segio superior.
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9
ELEMENTOS

Lo = 200mm

Figura 5 - Modelo Estrutural do Corpo de Prova

c) Analise e Resultados

Este primeiro modelo foi implementado para simular apenas o comportamento
elastico do corpo de prova.

Utilizando o comando <DISLIST> (diretamente no GeoStar Console), ou pelo
Menu (Results>List>Displacement/Response/Reaction), e escolhendo as opgdes
desejadas, pode-se obter as forgas resultantes.

Para cada deslocamento, foi obtida a forga resultante (na diregéo y) através da
soma do valor das forgas nos nés da se¢do superior.

Os resultados foram altamente satisfatorios para a regido elastica estudada.

A tabela 2 e o respectivo grafico (figura 6) a seguir ilustram os resultados
obtidos.



For¢a (kgf)

18000 -
16000 -
14000 -
12000 -
10000 -
8000 -
6000
4000 -
2000 -

iy Vit
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Tabela 2 - Comparagiio Literatura x Simulacio

Desloc. Forga Farga
COSMOS/M
(mm) (kgf) (keD)
0 0 0

0,050 1490 1505
0,100 3000 3010
0,150 4420 4514
0,200 5920 6019
0,250 7450 7524
0,300 8900 9029
0,350 10350 10530
0,400 11900 12040

For¢a x Deslocamento

T

0.4

T T

086 0.8 1 1.2

Deslocamento (mm)

~+— Literatura

Simulagcao

Figura 6 - Resultados: Literatura x Simulacio
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4.4.2 Paralelepipedo Equivalente — Bilinear (Andlise Néo Linear) — Simples

Neste modelo, procurou-se analisar também a parte plastica do ensaio, porém,
apenas aproximando por uma reta, através da determinagio do Médulo Tangente
(ETAN). O ETAN (ETAN = 909,85 kgf/mm?) é o coeficiente angular da reta que
aproxima a parte plastica no grafico de tensfo nominal x deformagio nominal (figura
7.

Curva Bilinear de Tens#o x Deformagio Nominal

70,00 _
«+~ 60,00 A A B
E 7’ A_" a & y = 809,85x + 54,728
A 2
E 00 AN R? = 0,9362
[=]
2 /
40,00
] y = 20886x + 0,0084
b— 2 _
E 3000 R=1
2z
.g 20,00
(]
10,00 -
0,00 . ; . : - .
0,000 0,001 0,002 0,003 0,004 0,005 0,008 0,007

Deformacio Nominal e

Figura 7 - Curva Bilinear Tensio Nominal x Deformagiio Nominal
A Tensfio Nominal (s) e a Deformagdo Nominal (e), provém das seguintes

equagdes: 5

§=— € e=—
S, L

onde P ¢ a Forga (Carga), S, ¢ a Area da Sego Transversal Inicial, AL é o

deslocamento e L, ¢ o comprimento inicial.
a) Linhas de Comando — Cédigo do Programa
C*

C* tlem_parale bilinear 2.ses
C* MUDA A VISAO
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VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,18.97,0,0,

PT,3,18.97,200,0,

PT,4,0,200,0,

C* MUDA A ESCALA

SCALE,.25,

C* FAZ A SUPERFICIE DO MODELO

SF4PT,1,1,2,3,4,0,

C* CRIA A MALHA

M SF,1,1,1,4,3,3,1,1,

C* UNE NOS COINCIDENTES

NMERGE, 1,30,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

EGROUP,1,PLANE2D,0,1,0,0,1,0,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1,EX,20996,NUXY,0.33,SIGYLD,59.1, ETAN,909.85,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO
A ESPESSURA

RCONST, 1,1,1,2,14.90,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,24,1

CURDEF,TIME, 1,1,0,0,1,1

NL_PLOT,1,24,1,0,

C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/24 DO TOTAL)

DND,13,UY,0.050,16,1,

C* ANALISE NAO LINEAR

C* R_NONLINEAR,
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b) Modelo do Corpo de Prova

O modelo utilizado ¢ o mesmo paralelepipedo equivalente do item 4.4.1

anterior (figura 5).

c¢) Analise e Resultados

Da mesma forma que no item 4.4.1 anterior, para cada deslocamento, foi obtida
a forga resultante (na dire¢fo y) através da soma do valor das forgas nos nés da segfio
superior.

A figura 9 apresenta o grafico da comparagdo com os resultados da literatura.

Pode-se verificar que os valores néo diferem muito do esperado.

4.4.3 Paralelepipedo Equivalente — MPC (Andlise Ndo Linear) — Simples

Neste modelo, a parte plastica do ensaio também foi analisada, porém, de
maneira mais precisa, através da curva Tensdo Real x Deformagdo Real do material
(figura 8), que ¢ implementada no programa através do comando <MPC> e
<MPCTYP>.

O primeiro ponto da curva MPC € considerado como o Limite de Escoamento,
sendo ignorado o pardmetro SIGYLD, se fornecido. Entdo, o comportamento entre a
origem e este ponto ¢ considerado linear. Entre os pontos fornecidos o programa
utiliza interpolagéo linear.'®
S6 € necessdrio a entrada do coeficiente de Poisson (NUXY) no cédigo do

programa.
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MPC
Tensdo Real x Deformag¢ido Real

7000 A =
6000 //‘__F_‘_4¢—|
5000 |
40P0 /

3000 7

2000 #

1000 V4

UDU T T T T T
0p0000 0po100  0pO200 000300 000400 0QOS00 O0OpOBDO 000700
Deformagio Real. e

Figura 8 - Curva MPC

A Tensio Real (0) e a Deformagéo Real (&), provém das seguintes equagdes:'’
o=s(l+e) e e=In(l+e),

onde s € a tensdo nominal e e € a deformagio nominal.
a) Linhas de Comando — Cédigo do Programa

C*

C* tlem_mpc_5.ses

C* MUDA A VISAO
VIEW,0,0,1,0,

C* GEOMETRIA DA PECA
PT,1,0,0,0,
PT,2,18.97,0,0,
PT,3,18.97,200,0,
PT,4,0,200,0,

C* MUDA A ESCALA
SCALE, .25,
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C* FAZ A SUPERFICIE DO MODELO

SF4PT,1,1,2,3,4,0,

C* CRIA A MALHA

M_SF,1,1,1,4,3,3,1,1,

C* ENTRADA DA CURVA MPC (TENSAO x DEFORMACAOQ)

MPCTYP, 1,1,

MPC,1,0,1,0.00200,42.19,0.00250,48.77,0.00300,53.23,0.00349,55.75,0.00399
,57.69,0.00449,59.00,0.00499,59.74,0.00548,59.95, 0.00598,60.69,

C* UNE NOS COINCIDENTES

NMERGE,1,30,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

EGROUP,1,PLANE2D,0,1,0,0,1,0,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1,NUXY,0.33,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO,
A ESPESSURA

RCONST,1,1,1,2,14.90,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,240,1

CURDEF,TIME, 1,1,0,0,1,1

NL_PLOT,1,240,1,0,

C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/240 DO TOTAL)

DND,13,UY,0.0050,16,1,

C* ANALISE NAO LINEAR

C* R_NONLINEAR,

b) Modelo do Corpo de Prova

O modelo utilizado ¢ 0 mesmo paralelepipedo equivalente do item 4.4.1 (ver

figura 5).
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c) Analise e Resultados

Da mesma forma que no item 4.4.1, para cada deslocamento, foi obtida a forca
resultante (na diregdo y) através da soma do valor das forgas nos nés da segfio
superior.

A figura 9 apresenta o grafico da comparagdo com os resultados da literatura.

Pode-se observar que os valores da simulagdo com o MPC apresentam 6tima
correlagdo com os valores da literatura.

For¢a x Deslocamento

18000 -

16000 /

14000

12000

10000

8000

Forga {kgf)

6000
4000
2000 /

0 0.2 04 0,6 0.8 1 1.2
Deslocamento (mm)

N ’io— Literatura Bilinear MPC ‘

Figura 9 - Resultados: Simulagiio MPC x Simulacdo Bilinear x Literatura

4.4.4 Modelo Axissimétrico — Bilinear (Andlise Ndo Linear) — Média

a) Linhas de Comando — Cédigo do Programa

C*
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C* tlem_axissim_bilinear 1.ses

C* MUDA A VISAO

VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,9.485,0,0,

PT,3,9.485,200,0,

PT,4,0,200,0,

C* MUDA A ESCALA

SCALE,.25,

C* FAZ A SUPERFICIE DA SECAO AXISSIMETRICA DO MODELO

SF4PT,1,1,2,3,4,0,

C* CRIA A MALHA

M SF,1,1,1,4,5,8,1,1,

C* UNE NOS COINCIDENTES

NMERGE, 1,54,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

C* EM NEGRITO, O PARAMETRO QUE DEFINE O TIPO
AXISSIMETRICO

EGROUP,1,PLANE2D,0,1,1,0,1,0,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1,EX,20996,NUXY,0.33,SIGYLD,59.1, ETAN,909.85,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO
AXISSIMETRICO, A ESPESSURA DEVE SER 0

RCONST, 1,1,1,2,0,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,24,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL_PLOT,1,24,1,0,

C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/24 DO TOTAL)
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DND,49,UY,0.050,54,1,
C* ANALISE NAQO LINEAR
C* R_ NONLINEAR,

b) Modelo do Corpo de Prova (figura 10)

O modelo axissimétrico permite a representagdo bidimensional de estruturas
tridimensionais com simetria axial, como o cilindro do exemplo, reduzindo a
quantidade de elementos e também o tempo de processamento. Quando existe
uniformidade de propriedades ao longo do corpo de prova, o modelo axissimétrico

apresenta desempenho equivalente ao tridimensional.

rred

M 40
ELEMENTOS

| Raio,
MM R = 9.485mm

b0

Figura 10 - Modelo axissimétrico do CP

c¢) Analise e Resultados
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Da mesma forma descrita no item 4.4.1 pode-se obter as forgas resultantes nos
nos da sego superior do CP. Entretanto, a forga resultante (na diregfio y), para cada

deslocamento (STEP), ¢ a soma das forgas de cada né (n) multiplicada pelo fator 2.
FR, =) (F)x2r
n=1

As figuras 12 e 13 apresentam os graficos da comparagio com os resultados da

literatura.

Pode-se verificar que os valores ndo diferem muito do esperado.

4.4.5 Modelo Axissimétrico — MPC (Andlise Ndo Linear) — Média

a) Linhas de Comando — C6digo do Programa

C*

C* TLEM_AXISSIM_MPC_2.SES

C* MUDA A VISAO

VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,9.485,0,0,

PT,3,9.485,200,0,

PT,4,0,200,0,

C* MUDA A ESCALA

SCALE, .25,

C* FAZ A SUPERFICIE DA SECAO AXISSIMETRICA DO MODELO
SF4PT,1,1,2,3,4,0,

C* CRIA A MALHA

M_SF,1,1,1,4,5,8,1,1,

C* ENTRADA DA CURVA MPC (TENSAO x DEFORMACAO)
MPCTYP,1,1,
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MPC,1,0,1,0.00200,42.19,0.00250,48.77,0.00300,53.23,0.00349,55.75,0.00399
,57.69,0.00449,59.00,0.00499,59.74,0.00548,59.95,0.00598,60.69,

C* UNE NOS COINCIDENTES

NMERGE, 1,54,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

C* EM NEGRITO, O PARAMETRO QUE DEFINE O TIPO
AXISSIMETRICO

EGROUP,1,PLANE2D,0,1,1,0,1,0,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1,NUXY,0.33,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO
AXISSIMETRICO, A ESPESSURA DEVE SER 0

RCONST,1,1,1,2,0,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,24,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL_PLOT,1,24,1,0,

C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/24 DO TOTAL)

DND,49,UY,0.050,54,1,

C* GERA SAIDAS DE DEFORMACAO

STRAIN OUT,1,1,0,0,1,1,

C* OS PARAMETROS EM NEGRITO FORAM EDITADOS,
AUMENTANDO A TOLERANCIA AS DEFORMACOES, POSSIBILITANDO
QUE O PROGRAMA RODE

A_NONLINEAR,S,1,1,20,0.1,0,N,0,0,1E+010,0.1,1,0,1,0,0,

C* ANALISE NAO LINEAR

C* R_NONLINEAR,

b) Modelo do Corpo de Prova
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O modelo axissimétrico utilizado é o mesmo do item 4.4.4 (figura 10).

¢) Analise e Resultados

Os resultados estio apresentados na tabela 3 a seguir e nos graficos das figuras
12 e 13.
Pode-se verificar que apresentaram excelente correlagdo com os resultados da

literatura.

Tabela 3 - For¢a Resultante: Literatura e Simulacfio

Forga
n D(er:::;" ':::;)a COSMOS/M
(kgf)

) 0 0

1] 0,050 | 1490 1500
2| 0,400 | 3000 3017
3| 0,450 | 4420 4526
4| 0200 | 5920 6035
51 0,250 | 7450 7546
6| 0,300 | 8900 9054
71 0,350 | 10350 10562
8| 0,400 | 11900 12001
9| 0,450 | 12800 12956
10| 0,500 | 13750 13867
11| 0,550 | 14400 14520
12| 0,600 | 15000 15111
13| 0,650 | 15360 15488
14| 0,700 | 15700 15834
15| 0,750 | 16100 16116
6] 0,800 | 16240 16355
17| 0,850 | 16500 16531
18] 0,900 | 16600 16694
19| 0,950 | 16700 16808
20| 1,000 | 16800 16902
21| 1,060 | 16820 16952
22| 1,100 | 16850 17040
23| 1,150 | 16900 17147
24| 1,200 | 17050 17254

4.4.6 Modelo Axissimétrico — MPC (Andlise Ndo Linear) — Refinada

a) Linhas de Comando — Cédigo do Programa
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C*

C* tlem_axissim_mpc_4.ses

C* MUDA A VISAO

VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,9.485,0,0,

PT,3,9.485,200,0,

PT,4,0,200,0,

C* MUDA A ESCALA

SCALE,.25,

C* FAZ A SUPERFICIE DA SECAO AXISSIMETRICA DO MODELO

SF4PT,1,1,2,3,4,0,

C* CRIA A MALHA COM 1280 ELEMENTOS

M _SF,1,1,1,4,10,128,1,1,

C* ENTRADA DA CURVA MPC (TENSAO x DEFORMACAOQ)

MPCTYP,1,1,

MPC,1,0,1,0.00200,42.19,0.00250,48.77,0.00300,53.23,0.00349,55.75,0.00399
,57.69,0.00449,59.00,0.00499,59.74,0.00548,59.95,0.00598,60.69,

C* UNE NOS COINCIDENTES

NMERGE, 1,54,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

C* EM NEGRITO, O PARAMETRO QUE DEFINE O TIPO
AXISSIMETRICO

EGROUP,1,PLANE2D,0,1,1,0,1,0,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1, NUXY,0.33,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO
AXISSIMETRICO, A ESPESSURA DEVE SER 0

RCONST, 1,1,1,2,0,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,
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C* CONTROLES DE PROCESSAMENTO

TIMES,0,240,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL_PLOT,1,240,1,0,

C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/240 DO TOTAL)
DND, 1409,UY,0.0050,1419,1,

C* GERA SAIDAS DE DEFORMACAQ

STRAIN_OUT,1,1,0,0,1,1,

C* ANALISE NAO LINEAR

C* R_NONLINEAR,

b) Modelo do Corpo de Prova (figura 11)

Este modelo foi implementado para avaliar a influéncia do refinamento da
malha nos resultados. O corpo de prova com 40 elementos foi substituido por um
com 1280.



31

Figura 11 - Modelo do Corpo de Prova Axissimétrico com Malha Refinada

¢) Analise e Resultados

As forgas resultantes foram calculadas, como descrito nos itens anteriores, e os
resultados estdo na tabela 4 abaixo e nos graficos das figuras 12 ¢ 13.

Verificou-se que os resultados para a Malha Refinada ficaram mais préximos
dos valores da Literatura. Entretanto, o tempo de processamento foi muito superior
ao da Malha Média.



Tabela 4 - Resultados: Malha Refinada x Literatura

Literatura Simulagao
Forga
Desloc. | Forga

n n (COSMOS/M

(mm) | (kgf) (kgf)
0 0 0 0 0
1| 0,050 | 1490 | 10 1495
2| 0,200 | 3000 | 20 2991
3| 0,450 | 4420 | 30 4486
4| 0,200 | 5920 | 40 5981
5| 0,250 | 7450 | 50 7477
6| 0,300 | 8900 | 60 8972
7| 0,350 |10350| 70 10468
8| 0,400 [{11900| 80 11944
9| 0,450 |12800| 90 12887
10| 0,500 [(13750|100 13823
11| 0,550 |(14400|110 14458
12| 0,600 | 15000 | 120 15080
13| 0,650 |15360|130 15450
14| 0,700 |15700| 140 15802
15| 0,750 |[16100|150 16085
16| 0,800 (16240|160 16349
17| 0,850 | 16500170 16537
18| 0,900 |16600| 180 16707
19| 0,950 |16700| 190 16814
20| 1,000 |16800| 200 16895
21| 1,050 |16820|210 16927
22| 1,100 | 16850220 16996
23| 1,150 |16900]230 17103
24| 1,200 | 17050 | 240 17210

32
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Forca x Deslocamento

14000

12000

10000

8000

For¢a (kgf)

6000

4000

2000
o/

17500

F 1 ¥ T

0,2 04 0.6 0.8 1 1.2
Deslocamento (mm)

|——Literatura —— MPC —« MPC - Refinada = Bilinear

Figura 12 - Comparagiio: Modelos Axissimétricos

Forca x Deslocamento
Parte Plastica

16500

e B

15500

14500

Forga (kgf)

13500

12500

0400

1

0.500 0,600 0,700 0800 0,900 1,000 1,100 1,200
Deslocamento {mm)

1 & Literatura Ao MPC + MPC - Refinada —-—Bilinear‘

Figura 13 - Comparagiio: Modelos Axissimétricos (Detalhe)

A seguir, estio relacionadas uma série de saidas tipicas do software

COSMOSM™ na forma grafica, implementadas para o modelo axissimétrico de
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malha refinada. Todas ilustram o STEP (instante) 240, quando o deslocamento foi o

maximo estudado.

c.i) Deslocamento na dir. y (u,)

HUIn DISP Step:240 =240

Diregdo de Aplicagdo da Forga

Figura 14 - Deslocamento na dir. y — CP deformado

c.ii) Distribui¢do de Tensdes Normais na dir. y (o)

Pode-se notar a ndo uniformidade da distribui¢io das tensdes ao longo do
corpo de prova (CP). Na regido em torno da linha de centro (LC), nas se¢des onde o

estreitamento do CP comega a ocorrer, pode-se observar valores maiores de oy,



HL1n STRESS Stepi248 =240

LC

Engastamento

Figura 15 - Tensdes Normais na dir. y - Parte Inferior do CP (deformado)

c.iii) Distribui¢do de Tensdes Normais na dir. x (o)

NLIn STRESS Step1248 =248

-+ Engastamento

Figura 16 — Tensdes Normais na dir. x — Parte Inferior do CP (deformado)

c.iv) Forga Resultante na dir. y (FR,)

35

(kgtimn?®)
Stgma_Y
&1.088

77.8435
73.882
68,968
64.317
€0 .2874
56.832
- 92,789

48,746

(kgifmm?)
Stlgmn_X
28.760400

25.66400
21.42589
17.78508
14.14686
16.59600
€ .866508
3.227608

~8.41251
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O gréfico na figura 17 mostra a forga resultante na dir. y na seg3o superior do
CP.

No item 4.4.4.c) foi descrito o procedimento de calculo da Forca Resultante
(FRy) para o modelo axissimétrico. Uma maneira alternativa, é obter a média da
forca do gréfico da figura, multiplicar pelo niimero de nés (11) e depois multiplicar

por 2.

HLIn RFORCE Stepi1240 =240

(kgf)
RFORCE _Y
493,068
360,390
227.776

93,05 e oo ey 95.1576

-37.459

372.08 ---cecmemdemneenc et brmeemaaad -170.87
-382.69

A3 B T L r T TP oy ARy RO S 4
~435.38

-567.92
130 . 87 d---cmmmrmc b eieecccmtbeneccaaas 3

9.0213
L

Distance

Figura 17 - For¢a Resultante na dir. y - CP niio deformado

5 EXEMPLO2'®

Este exemplo foi baseado nos dados fornecidos pelo Exercicio 1, da pagina 30
da referéncia: “Laminagdo dos Agos — Topicos Avangados". PLAUT, Ronald Lesley.

O problema trata de um ensaio de tragio em corpo de prova cilindrico de um
ago AISI 1015, até seu rompimento. E um exemplo de resultado de ensaio de tragdo
onde a parte pldstica recebe muito mais atengdo que a parte eldstica, pois os
resultados experimentais de Carga x Comprimento fornecidos ndo permitem
determinar com precisdo os valores na zona elastica.

Baseado nos resultados do exemplo anterior (também cilindrico), cujo modelo
que melhor se comportou foi o axissimétrico ,com uso da MPC e malha Refinada, o
modelo escolhido para a simulagdo deste exemplo foi o axissimétrico, com MPC, e

malha retangular de nivel Médio (80 elementos).
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5.1 Dados e Pariametros Calculados

Os dados do problema foram:
Material: Ago AISI 1015;

a
b. Comprimento Util (Extensdmetro), L, = 50,8 mm;

e

Didmetro inicial, d, = 14,33 mm;
d. Tabela Carga (kg) x Comprimento (mm), (tabela 5).
Essas informagdes permitem o célculo de diversos parimetros, também

mostrados na tabela 5 seguir.

Tabela S - Dados Fornecidos e Parimetros Calculados

. Deformagéo Tensdo Tensao
n g ?&g?) C°[“ ?rrrlunrﬁ; to Nominzgal;la Nominal Def;{);r:f :éo Real ¢ I?Le(srlno;.)
e=Al/Lo s (kgf/mm?) (kgf/mm?)

1| 4220 51,18 0,01 26,17 0,0075 26,36 0,38
2| 4200 51,59 0,02 26,04 0,0154 26,45 0,79
3| 4760 52,37 0,03 29,51 0,0304 30,43 1,57
4 | 5150 53,16 0,05 31,93 0,0454 33,42 2,36
5| 5500 53,92 0,06 34,10 0,0596 36,20 3,12
6| 5780 54,71 0,08 35,84 0,0742 38,60 3,91
7| 6020 55,50 0,09 37,33 0,0885 40,78 4,70
8 | 6250 56,29 0,11 38,75 0,1026 42,94 5,49
9| 6400 57,05 0,12 39,68 0,1160 44,56 6,25
10| 6510 57,84 0,14 40,36 0,1298 45,96 7,04
11| 6640 58,62 0,15 41,17 0,1432 47 .51 7,82
12| 6960 61,95 0,22 43,15 0,1984 52,63 11,16
13| 7100 68,78 0,35 44,02 0,3030 59,60 17,98
14| 7080 71,12 0,40 43,90 0,3365 61,46 20,32
15| 6960 71,53 0,41 43,15 0,3422 60,76 20,73
16| 5890 72,31 0,42 36,52 0,3531 51,98 21,51
17| 4850 72,64 0,43 30,07 0,3576 43,00 21,84

As equagdes utilizadas ja foram citadas no exemplo anterior.

5.2 Curva MPC (Material Property Curve)

A Curva de Propriedades do Material, MPC, para este exemplo, trata-se da

Curva Tensdo Real x Deformagdio Real. O grafico da figura 18 a seguir mostra as
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curvas Tensio x Deformagiio Convencional (Nominal ou de Engenharia) e¢ Real

(Verdadeira), e a parte da curva real abrangida pela MPC.

Tensdo x Deformagéo

70,00 -

60,00 -

4
50.00 o

40,00

30,00

o, s (Kgfimm?)

20,00

10.00

0.00 |

0.0000 0.1000 0.2000 0.3000 04000 0,5000
€,

[+ Real —=— Convencional |

Figura 18 - Curvas Tensdo x Deforma¢3o Real e Convencional; MPC

E importante salientar que o modelo foi implementado até o ponto de carga
méxima aplicada (n = 13), ndo compreendendo a zona de formagdo do pescogo
(estricgdo). Nessa regifio, ocorre uma complexa mudanga no estado de tensdes do
material, que passa de uniaxial para triaxial (no caso de uma barra circular) ou
biaxial (tira fina)."”

O primeiro ponto da curva MPC é o do fim do regime eléstico, ou o Limite de
Escoamento. Entretanto, o exercicio no fornece tal informagdo com rigor. Assim,
foi calculado um valor aproximado, baseado nas propriedades do material (tabela 6).
O exercicio também ndo fornece o tipo de tratamento aplicado ao corpo de prova.

Portanto, as propriedades citadas servem apenas como referéncia.
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Tabela 6 - Propriedades Mecanicas do Aco AISI 1015 a 25°C*

Propriedades Tratamento
[Densidade (x1000 kg/m?) 7,7 — 8,03
Coeficiente de Poisson 0,27 — 0,30

[Mddulo de Elasticidade (GPa) | 190210
[Limite de Resisténcia (MPa) 386,1 )
[Limite de Escoamento (MPa) 284,4 |Recozido a 870°C
Alongamento (%) 37,0
[Reduciio na Area (%) 69,7

Dessa forma, foi considerado:
a. Moddulo de Elasticidade, E = 20996 kgf/mm?;
b. Deformagio, € = 0,001381;
¢. Limite de Escoamento Aproximado, LE = 29 kgf/mm?.
A partir desse ponto (n), considerou-se os pontosn =4, 6, 8,9, 10, 11, 12 e 13,

para o restante da curva.

3.3 Linhas de Comando — Cédigo do Programa

C*

C* tlpr_axissim_mpc_1 ref.ses

C* MUDA A VISAO

VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,7.165,0,0,

PT,3,7.165,50.8.0,

PT,4,0,50.8,0,

C* MUDA A ESCALA

SCALE,.5,

C* FAZ A SUPERFICIE DA SECAO AXISSIMETRICA DO MODELO
SF4PT, 1,1,2,3,4,0,

C* CRIA A MALHA COM 80 ELEMENTOS
M _SF,1,1,1,4,5,16,1,1,



40

C* ENTRADA DA CURVA MPC (TENSAO x DEFORMACAO)
MPCTYP, 1,1,
MPC,1,0,1,0.001381,29,0.0454,33.42,0.0742,38.60,0.1026,42.94,0.1160,44.56,

0.1298,45.96,0.1432,47.51,0.1984,52.63,0.3030,59.60,

C* UNE NOS COINCIDENTES

NMERGE, 1,102,1,0.1,0,0,0,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

C* EM NEGRITO, O PARAMETRO QUE DEFINE O TIPO

AXISSIMETRICO

EGROUP,1,PLANE2D,0,1,1,0,1,1,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL

MPROP,1,NUXY,0.30,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO

AXISSIMETRICO, A ESPESSURA DEVE SER 0

5.4

RCONST,1,1,1,2,0,0,

C* CRIA UM ENGASTAMENTO

DCR,1,AL,0,1,1,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,1000,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL PLOT,1,1000,1,0,
A_NONLINEAR,S,1,1,20,0.001,0,N,0,0,1E+10,0.001,0.01,0,1,0,0,
C* DEFINE O INCREMENTO DO DESLOCAMENTO (1/1000 DO TOTAL)
DND,97,UY,0.01798,102,1,

C* GERA SAIDAS DE DEFORMACAO

STRAIN_OUT, 1,1,0,0,1,1,

C* ANALISE NAO LINEAR

C* R_NONLINEAR,

Modelo do Corpo de Prova
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A figura 19 abaixo mostra o modelo axissimétrico do corpo de prova com a

malha de 80 elementos. O eixo y é o de simetria.

EAmES

180
~—ELEMENTOS
Raip | |
R[=|7}169mm
Y- 4
Z X

Figura 19 - Modelo Axissimétrico do Corpo de Prova

5.5 Analise e Resultados

As forgas resultantes foram calculadas, como descrito nos itens anteriores, € 0s
resultados estdo na tabela 7 abaixo e no grafico da figura 20.

Pode-se verificar que a simulagdo obteve uma boa correlagio com os
resultados da literatura. Apenas no inicio da parte plastica houve erros superiores a
10%. Um dos motivos pode ter sido a superestimagio do valor do limite de
escoamento do material. Entretanto, os préprios resultados experimentais podem

conter desvios maiores no inicio do ensaio, ja que o ensaio foi conduzido com foco

na parte plastica.
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Tabela 7 - For¢a Resultante na Simulagio

Simulagio
lteragcao Carga
aproxin‘;ida de 1 /9211: c?;g:) F
(STEP) (kgf) 9
21 756,2 4751
44 771,8 4849
87 798,8 5019
131 828,2 5204
174 8746 5495
217 919,6 5778
261 956,4 6009
305 990,2 6222
348 1016 6384
392 1036 6509
435 1053 6616
620 1110 6974
1000 1164 7314

For¢a x Deslocamento

aﬂﬂa

8
3

3
3

A6

Forga (Kgf)

=
8

=
&

g

0,00

5,00 10,00 15.00 20,00 25,00
Deslocamento (mm)

10 Literatura A Simulagéa

Figura 20 - Comparaciio: Simulacdo x Literatura

A seguir, algumas saidas tipicas do software COSMOSM™ na forma grafica.

Todas ilustram o STEP (instante) 1000, quando o deslocamento foi o maximo

estudado.
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3.5.1 Deslocamento na dir. y (u,)

A figura 21 abaixo mostra o corpo de prova deformado para o deslocamento de

17,98 mm (maximo analisado).
NLIn DISP Step11880=1880

(mm)
Dlep_Y

B 52
13.485
11.237
8.9960
£.7425
4.4950
2.247%

Figura 21 - Deslocamento na dir. y — CP Deformado

5.5.2  Distribui¢do de Tensdes Normais na dir. y (o)

Da mesma forma que no Exemplo 1 estudado, pode-se notar a ndo
uniformidade na distribui¢do das tensGes ao longo do corpo de prova. Observa-se
também que os maiores valores de o, ocorrem na se¢do do estreitamento do CP.

O grafico da figura mostra a distribuigdo de o, nos nds da segfio engastada
(inferior) do corpo de prova.

Pode-se estimar a For¢a Resultante na dir. y multiplicando o valor da Tenséo
Média em y (cerca de 44 kgf/mm?) pela area da se¢do (161,28 mm?). O resultado de
7096 kgf, que € a Forga Resultante na dir. y (FR,)para o deslocamento total de 17,98

mm, fica muito préximo do resultado experimental do ensaio, que foi de 7100 kgf.
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HLin STRESS Stept18dd«)eny

{kgfimm®)
Sigma_ Y
37.983

55.5%0
33.371?
51.164
a8.%11
110,34

4%.7313

44.526

R e

B9.4323---- 4z

49.100

68.52¢

47.61) Jeeoncmmrcadei b -

(S PR SN

26.7

=1

L %.5

LU FOEUR S PR SR

-
~N
]
-

Distance

Engastamento

> v

Figura 22 - Tensdes Normais na dir. y - CP deformado

5.53.3 Distribui¢do de Tensbes Normais na dir. x (o)

MLin STRESS Stepsld08«1004

(kgf/mm?)

Slgas_¥
15.0808

16,1038
13.2060
10,3898
T.A1220
4,51530
1.61248
12789

-4.1754

LC

Engastamento

Figura 23 - Tensies Normais na dir. x - CP deformado
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3.5.4 Forg¢a Resultante na dir. y (FR))

Para exemplificar o procedimento de obten¢do da Forga Resultante na dir. y
(FR)) descrito no item 4.4.4, efetuou-se a somatoria do valor de F, para os nds da
sec¢do superior do CP para o STEP 1000 (desloc. y = 17,98). O valor obtido, de 1164
kgf (ver figura 24), multiplicado pelo fator 2m, resulta em FR, = 7314 kgf. (ver
grafico da figura 20 e tabela 7 anteriores).

[ DISLIST,1000,4,97,102,1,0 =13

1000

Hode pid REY R RERES
97 0.000e+000 1.553e+001 0.000e+000 1.553e+001
98 0.000e+000 9.311e+001 0.000e+000 9.311le+001
99 0.000e+000 1.863e+002 0.000e+000 1.863e+002
100 0.000e+000 2.794e+002 0.000e+000 2.794e+002
101 0.000e+000 3.726e+002 0.000e+000 3.726e+002
102 0.000e+000 2.174e+002 0.000e+000 2.174e+002
Sum : 0.000e+000 1.164e+003 0.000e+000 1.164e+003

Figura 24 - Listagem das Forg¢as na dir. y nos nés da se¢io superior do CP

HLIn RFORCE Step:1800=1089

b (kg)
RFORCE_Y
372.596
FRy
277.928
183.250
372,62 ceee e 88.5798
| -6.0903
H
3 R B L R L R e T 4 -180.76
.~195.43
194,06 {---eemaedcrig b e n e anabaaiaaand
-238.18
-384.77
104,78 -caccaeea L SR S 3 38
15.494 :
L 8.5 1
9.25% 9.7%
Dietance Yy

Figura 25 - Forca Resultante na dir. y - CP deformado
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6 EXEMPLO3?*

Este exemplo foi baseado nas informagdes fornecidas no item “5.5.1 Uniaxial
tensile test”, da referéncia: “Numerical Analysis of Forming Processes”. Pittman,
J.F.T., Zienkiewicz, O.C., Wood, R.D., Alexander, J.M., pp.126-129.

Na referéncia, o interesse foi calcular a curva Tens3io x Deformagdo de
Engenharia de um ensaio de tragdio em um ago efervescente, usando o Método dos
Elementos Finitos, e compard-la com a solugio prévia descrita por Ghosh®,
verificando a influéncia do coeficiente de sensibilidade a taxa de deformagio (m).

Para este trabalho, considerou-se apenas o caso de m = 0, com a finalidade de
comparar os resultados para a curva Tensfio x Deformagdo de Engenharia. Em
seguida, realizou-se uma andlise qualitativa das deformagdes ao longo do corpo de
prova, concluindo com uma estimativa do afinamento do corpo de prova. Esta
analise serve como ponto de partida para estudos sobre estampabilidade de chapas.

Efetuou-se um modelo bidimensional do corpo de prova, implementado com a
curva MPC do material e malha refinada.

Esse modelo foi também utilizado para uma anélise qualitativa da mudanga na

distribui¢éo das tensdes na presenga de inclusfo, de porosidade (vazio), e de entalhe.

6.1 Determinagio da Regiiio de Validade do Modelo

Na referéncia, o modelo é implementado até o ponto de rompimento, ou o fim
do ensaio, e, posteriormente, verifica-se a area de convergéncia dos resultados.
Entretanto, como foi definido nos exemplos anteriores, o escopo deste trabalho trata
da simulagdo até a regido de formagfo do pescogo (estricgdo). Assim, o primeiro
passo para a confecgdo do modelo foi encontrar a carga méxima, ou mais
especificamente, a deformagdo de engenharia associada a carga maxima do ensaio.

Os seguintes pardmetros foram fornecidos pela referéncia para o ago

efervescente em questio:
a. Equagio da Curva de Escoamento: o = K(£+a)"(£/y)"™, que foi

aproximada para o = K(£)", ja que a = 0,0001, e m = 0,
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b. Coeficiente de encruamento, n=0,2;
c. Coeficiente de resisténcia (tensdo para ¢ = 1,0), K = 510,16 MPa =
52,036 kgf/mm?;
d. Anisotropia, r = 1,0.
No ponto de carga maxima tem-se que £ = n.>’ Assim, tem-se que £= 0,2, e,
conseqiientemente, a deformagdo nominal, e = 0,22.
Portanto, a simulag¢fio pretende ser valida para pontos na curva de escoamento

até a deformagfo nominal de 22%.

6.2 Curva MPC

A propria equagéo da curva de escoamento (acima) define a curva MPC a ser

implementada, mostrada no gréfico da figura 26 a seguir.

Curva MPC
— A’(g) n

40,00 -

35,00 / f’*

e 0,2
30,00 y = 522.036x |
/ R?=1
25,00

20,00

15.00

10,00

Tensdo Real, ¢ (kgf/mm?)

5.00

0.00
0 002 004 006 008 01 012 014 016 018 02 022

Deformac¢do Real, &

Figura 26 - Curva MPC
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6.3 Linhas de Comando — Cédigo do Programa

C*

C* pittman_dzf 2 large.ses

C* MUDA A VISAO

VIEW,0,0,1,0,

C* GEOMETRIA DA PECA

PT,1,0,0,0,

PT,2,0,6.35,0,

PT,3,27.94,6.35,0,

PT,4,50.8,9.86,0,

PT,5,50.8,0,0,

PT,6,27.94,82.55,0,

PT,7,27.94,0,0,

CRARC,1,3,4,6,76.2,

CRLINE,2,1,2,

CRLINE,3,2,3,

CRLINE 44,5,

CRLINE,5,5,7,

CRLINE,6,7,1,

CRLINE,7,7,3,

C* SUPERFICIE 1 DA PECA

SF4CR,1,2,3,7,6,0,

C* SUPERFICIE 2 DA PECA

SF4CR,2,1,4,5,7,0,

C* CRIA A MALHA NAS SUPERFICIES

M SF,1,1,1,4,6,32,1,1,

M SF,2,2,1,4,20,6,1,1,

C* DEFINE AS PROPRIEDADES DO ELEMENTO

EGROUP,1,PLANE2D,0,2,0,0,1,1,0,0,

C* DEFINE AS PROPRIEDADES DO MATERIAL, COEF. DE POISSON
ADOTADO COMO 0,33



49

MPROP,1,NUXY,0.33,

C* FAZ A SIMETRIA DO ELEMENTO EM X

ELSYM,1,312,1,X,1,0,

C* FAZ A SIMETRIA DO ELEMENTO EM Y

ELSYM,1,624,1,Y,1,0,

C* DEFINE CONSTANTES DEPENDENDO DA GEOMETRIA, NO CASO
A ESPESSURA DE 0,8 mm

RCONST,1,1,1,2,0.8,0,

C* CONTROLES DE PROCESSAMENTO

TIMES,0,10,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL _PLOT,1,10,1,0,

C* ENTRADA DA CURVA MPC (TENSAO x DEFORMACAO)

MPCTYP,1,1,

MPC,1,0,1,0.02,23.80,0.04,27.33,0.06,29.64,0.08,31.40,0.1,32.83,0.12,34.05,0.
14,35.12,0.16,36.07,0.18,36.93,0.2,37.71,

C* UNE NOS COINCIDENTES

NMERGE, 1,2576,1,0.01,0,0,0,

C* RENUMERA A SEQUENCIA DE NOS SEM PULAR NENHUM

NCOMPRESS, 1,2576,

A_NONLINEAR,S,1,1,20,0.001,0,N,0,0,1E+10,0.001,0.1,0,1,0,0,

C* GERA SAIDAS DE DEFORMACAO

STRAIN_OUT, 1,1,0,0,1,1,

C* RESTRINGE O MOVIMENTO DA LINHA DE CENTRO NA DIR. Y

DND,7,UY,0,231,7,

DND,378,UY,0,595,7,

DND,352,UY,0,371,1,

DND,716,UY,0,735,1,

C* DEFINE O INCREMENTO DO DESLOCAMENTO NA DIR. X (1/10) E
RESTRINGE O MOVIMENTO NA DIR. Y NAS EXTREMIDADES

DND,232,UY,0,352,20,

DND,232,UX,1.125,352,20,
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DND,975,UY,0,1035,20,
DND,975,UX,1.125,1035,20,
DND,934,UY,0,937,3,
DND,934,UX,1.125,937,3,
DND,596,UY,0,599,3,
DND,596,UX,-1.125,599,3,
DND,637,UY,0,717,20,
DND,637,UX,-1.125,717,20,
DND, 1286,UY,0,1346,20,
DND, 1286,UX,-1.125,1346,20,
DND, 1247,UY,0,1248,1,
DND,1247,UX,-1.125,1248,1,
C* ANALISE NAO LINEAR
C* R_NONLINEAR,

Modelo do Corpo de Prova

A figura 27 abaixo mostra o modelo do corpo de prova bilinear e suas

dimensdes. A espessura (Z,) é de 0,8 mm.

Os deslocamentos sdo aplicados nas duas extremidades, na dir. x. Estas, além

da linha de centro, sofreram restri¢do de movimento na dir. y.

O modelo € constituido de 1248 elementos.

Raio = 76,2 mm

\ .

[] l ~1TT] ":':E,—‘q
LT = 14
- "-:1 rv ] E"‘ {4 ] ,_41
sistssarese ratasdcicasatn
LTI HHH T
M y I -4
LB 3.9

..4::'—'-“ ] ++4 :: :’*:'4

- e -9
T H E~ T H-HD
gEsansse=s T
L2 T Largura, w, = 12,7 mm 27.94 mm 22,86 mm “_:%

Figura 27 - Modelo do Corpo de Prova
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6.5 Analise e Resultados

6.5.1 Curva Tensdo x Deformag¢do de Engenharia

Como nos exemplos anteriores, através da soma do valor da forga na dir. x nos
ndés de uma das extremidades, determinou-se a For¢a Resultante na dir. x (FR,).
(Neste caso ndo se multiplica por 27, pois ndo € axissimétrico.)

Em seguida, converteu-se os resultados de For¢a x Deslocamento para Tensdo
Nominal x Deformagio de Engenharia (equagdes no item 4.4.2), cujo grafico
encontra-se na figura 28 abaixo. Verifica-se que os valores obtidos da simulagéo

apresentam uma boa correlagio com os valores da literatura. Os erros ndo

ultrapassam 5%.

Tensdo x Deformagdo de Engenharia

350.00 -

300.00 BTSN S e A

T |

250,00 .

© 200,00
Q. 2
=

;’ 150.00

100,00

50.00

0.00

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%
e

—— L iteratura —m— Simulacédo

Figura 28 - Comparacfo: Literatura x Simulagio

6.5.2 Deformagées ao longo do corpo de prova
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As figuras 29, 30 e 31, a seguir ilustram o comportamento da distribuigio das
deformagdes ¢, €, € €, ao longo da linha de centro. Foi considerado somente um lado
do modelo devido a simetria.

Os valores de g e €, foram obtidos da simulagdo, solicitando as deformagdes
nos elementos da linha de centro através do comando <STRNLIST>. Os valores de

g, foram calculados pela equagfio g, + &, +€,= 0.
p q y

Distribuicdo da Deformagao ao longo da linha de centro

0.35000 -

0.30000

« STEP 1
»
L e LTI EEL EECPT L POV LETPPPUR « STEP 2
Ko - STEP 3
p%4 ++++++++++++++++++++++++++++++
< 4,20000 e STEP 4
18 ooonou-oonooo-oouonuu.... + _’ + STEP 5
O e -
D 0.15000 |rsreio s e 8 T | |*STEPE
E x *Y - + STEP 7
o x o' -STEP 8
@ 0.10000 LI
Q X o STEP 9
x et
o STEP 10
0‘05000 SN IR EDEEREE LI . +_:-
»mmnmmum.w %
0,00000 . : , .
0,00 1000 20.00 3000 40,00 so,oo eo.oo 70,00

=) Distancia do Centro (mm)

Figura 29 - Deformacio axial €; ao longo da linha de centro
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Distribuicdo da Deformagdo ao longo da linha de centro

Distancia do Centro (mm)

0 10 20 30 40 50 60 70
0.000 } t t } e vwi= |
.ouooouogn‘. ! ;i‘fﬁ:— l
20010 2004000400000 040000400000000009¢°° : §+ 5
) '.* x ':.:‘
0.020 .t By
Al EASNSERAGEESERNEEAMERAGEEmEnanal XX._'_*;-" . STEP 1
-0,030 va°+ _- | = STEP 2
@ 209 ¥l | STEP3
0 -0.040 < | sTEP4
v ] x L]
%0050 S = STEP 5
E X R KK KO0 R KO O0K X K XK LT « STEP 6
O - |
‘z-ODGO -toooooooc--oonooocoooc.ooo".. +L +STEP 7
(=] o+ - 1N STEP 8
_0‘070 2 b b bbb b b A b b b A b b b e b b4 & a2 i 44 - - -_- ! ST‘EP 9
B e . |_sTeP 10
0090 +——————--"—-—~-mmmm e m—m e -
-0.100 -

Figura 30 - Deformagiio €, ao longo da linha de centro

Distribuicdo da Deformagao ao longo da linha de centro

Distancia do Centro (mm)

0 10 20 30 40 50 60 70
0.000 % } } } {
o00000000»0000000000ooonoooooooo“”’”t‘ﬁ““" W
TITITT amany II-II.. xx'++-
-0,050 - £got
' L » STEP 1
* o 4+
e N = STEP 2
N 0,100 R b R e L X .n.++ = STEP 3
‘8 ...........................‘... T o STEP4
O ¥ -
2—0150 FFFFFEFTTFITFFTFFFTFTFFTFTITFS et = x STEP 5
= .o » STEP 6
- R ECTTTEPERRIR L - STEP7
Q 9200 -STEP 8
STEP @
0,250 STEP 10
_\}0.300 -

Figura 31 -Deformagfo €, ao longo da linha de centro

O grafico a seguir (figura 32) mostra a distribuigdo de &, €, e €, ao longo da

linha de centro para o STEP 10.
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£x, €y, €z (STEP 10)

0,400 -
Q350 q0000000000000000000000000.,.
0,300 s,
0,250 *
0,200 .
0,150 . |
0,100 — . ex
*
0.050 s = ey

Yooy
o400
0.000 T T T T T -...-naum.- i ez

20,050 10 20 30 40— =250 80 70

-

Deformagao

_0100 IlllIIIIIIIlllllllllll..ll.lll...

-0,150
-0,200
-0,250 —’- --------------
-0,300 -

AN Distancia do Centro (mm)

Figura32-g,, ¢, €€,

6.5.3 Afinamento

Foi estimado o valor do afinamento da chapa considerando a redugéo de
largura dada pela simulagdo ¢ o valor da anisotropia fornecido pelo problema, através
da relagio®*:

e In(w, /w) ’
In(t, /1)
onde w, ¢ a largura inicial, w, a largura final, #,, a espessura inicial, ¢ #, a espessura
final.

A tabela 8 e o grafico (figura 33) abaixo mostram o valor do afinamento para

todos os passos (STEP 1, 2, ..., 10) da simulag8o, até o deslocamento total de 11,25

mm (11,25 mm para cada lado, totalizando 22,50 mm).



Tabela 8 - Afinamento na Regido central do CP

Largura
na
Regido
Reducéo de Central | Afinamento
Largura na do CP | na Regido
Regido Central no Central do
STEP do CP instante i CP
i Desloc. y (mm) | w (mm) t (mm)
0 0 12,7 0,8
1 0,054 12,592 0,793
2 0,136 12,428 0,783
3 0,206 12,287 0,774
4 0,272 12,156 0,766
5 0,334 12,033 0,758
6 0,390 11,921 0,751
7 0,441 11,817 0,744
8 0,489 11,721 0,738
9 0,534 11,632 0,733
10 0,674 11,552 0,728

Afinamento na Regido Central do CP

0.81 -

038
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0,79

0,78

0,77

0.76

0,75

Espessura {mm)
¢

0.74

073

072 T v . T

STEP

Figura 33 - Afinamento na Regifio Central do CP

6.5.4 Saidas Grdficas do Programa
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Todas as saidas ilustram o STEP 10, para o deslocamento méaximo estudado

(11,25 mm).

a) Deslocamento na dir. x (uy)

NLin DISP Step:l® =18

<pemem————

Hmﬂ i

L

Figura 34 - Deslocamento na dir. x (u,) - CP deformado

b) Distribui¢do de Tensdes Normais na dir. x (oy)

O grafico da figura 35 mostra o na linha de centro.

{mm)
.:.0'.0
.-2.812%
~3.6250
X
FRx
i
: Egstf:?fﬁ]
: :EE_-‘f-F;‘E:::l
_:I;-‘H.'. L{m
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NLin STRESS Step:l® =j4

(kgfimm?)
Sigme_X
38,425
38426 oo e 36.101
-33.7718
31.455
38.378 20,132
I 26,209
24486
39,33 Y i
22.163
| 19,848
26.282
|
-
22,235
.5
.23 07s
Distance
1T T LLIL 1
8 1
n Il:i I -
bt -
1T H -
T I SF 14
1l i 13 1T
1t IT i | 1T

Figura 35 - Distribuigio de Tensdes Normais na dir. x (c,) - CP deformado

¢) Forga Resultante na dir. x (FRx)

NLIn RFORCE Stepil8 =i®

(kgf}
RFORCE_X
27.93%50
27.936 i cemmeeaens pomian p-—anssers; . : 20.9518
! : : 13,9678
H !

24,343 4---aeaameeeen T - 6.98376

1]
| 8.06000

20,75 - vermmnmaeas RIS U S o Y |
\ -6.9837

|
-13.967

17.1924-—-cmcccnnnan SRS PP SR |
-28.951

' -
13.563 N X -27.935
. e.s 1
v.25 8.75
'FRX Distance

Figura 36- For¢a Resultante na dir. x (FRx) - CP deformado
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6.6 Anilise de Tensdes devido a Presenga de Inclusdes, Vazios (Porosidades) e
Entalhe

A presenga de descontinuidades no material tem influéncia na distribui¢io das

tensdes ¢ deformagdes ao longo da pega. A seguir, seguem alguns modelos deste

exemplo.

6.6.1 Inclusdo

a) Cédigo do programa

C*

C* pittman_dzf 2 large inclusion_1.ses
VIEW,0,0,1,0,
PT,1,0,0,0,
PT,2,0,6.35,0,
PT,3,27.94,6.35,0,
PT,4,50.8,9.86,0,
PT,5,50.8,0,0,
PT,6,27.94,82.55,0,
PT,7,27.94,0,0,
CRARC,1,3,4,6,76.2,
CRLINE,2,1,2,
CRLINE,3,2,3,
CRLINE4,4,5,
CRLINE,S,5,7,
CRLINE,6,7,1,
CRLINE,7,7,3,
SF4CR,1,2,3,7,6,0,
SF4CR,2,1,4,5,7,0,
M_SF,1,1,1,4,6,32,1,1,
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M _SF,2,2,1,4,20,6,1,1,
EGROUP,1,PLANE2D,0,2,0,0,1,1,0,0,
MPROP,1,NUXY,0.33,
ELSYM,1,312,1,X,1,0,
ELSYM,1,624,1,Y,1,0,

RCONST, 1,1,1,2,0.8,0,
TIMES,0,10,1,
CURDEF,TIME, 1,1,0,0,1,1,
NL_PLOT,1,10,1,0,
MPCTYP, 1,1,
MPC,1,0,1,0.02,23.80,0.04,27.33,0.06,29.64,0.08,31.40,0.1,32.83,0.12,34.05,0.
14,35.12,0.16,36.07,0.18,36.93,0.2,37.71,
NMERGE, 1,2576,1,0.01,0,0,0,
NCOMPRESS, 1,2576,
A_NONLINEARS,1,1,20,0.001,0,N,0,0,1E+10,0.001,0.1,0,1,0,0,
STRAIN_OUT, 1,1,0,0,1,1,
DND,7,UY,0,231,7,
DND,378,UY,0,595,7,
DND,352,UY,0,371,1,
DND,716,UY,0,735,1,
DND,232,UY,0,352,20,
DND,232,UX,1.125,352,20,
DND,975,UY,0,1035,20,
DND,975,UX,1.125,1035,20,
DND,934,UY,0,937,3,
DND,934,UX,1.125,937,3,
DND,596,UY,0,599,3,
DND,596,UX,-1.125,599,3,
DND,637,UY,0,717,20,
DND,637,UX,-1.125,717,20,
DND,1286,UY,0,1346,20,
DND,1286,UX,-1.125,1346,20,
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DND,1247,UY,0,1248,1,

DND,1247,UX,-1.125,1248,1,

C* MUDA AS CARACTERISTICAS DO ELEMENTO
EPROPCHANGE,957,957,1, MP,2,14,

C* MUDA AS PROPRIEDADES DE UM ELEMENTO
MPROP,2,EX,3000,SIGYLD,10,NUXY.,0.5,

C* R_NONLINEAR,

b) Modelo do Corpo de Prova

A figura 37 abaixo mostra o modelo do CP com a inclus#o.

4 i
v g
MR

Trild
1 7]
pao)

IR

(91
b

jnual

ﬁ ﬁ Inclus&o — Elemento; 957~

Figura 37 - Modelo do CP com inclusio

¢) Distribui¢do de Tenstes

As figuras 38 e 39 a seguir mostram a Distribui¢do de Tensdo de Von Mises e
Normal ao longo do CP.

Pode-se observar o aumento na concentragio de tensdes na regido ao redor da
inclusdo.

O gréfico da figura 38 representa a tensdo ao longo da linha de centro.
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NLin STRESS Steptif® =10

{kgf/mm?)
Yon Hisee
$2.98400
40,6197 — 4086008
13708
s 37.13
34.21408
35.363
4 31.29008
y 28.36700
3.107 25.44000
| | 22.52000
19.59700
24.851
-
X
19.595 3
- .5
FRx 0.2 075 FRx

I Distance “

Figura 38 - Distribuicio da Tens#io de Von Mises

HLin STRESS Step:i@ =19

(kgt/mm?)

Slgas_X
46.32600

40.63500
34.74700
28.%3700
22.,967%9
y 17.07700

| i1.18700

| 5.207460

-9.9924%

-FRx FRx

Figura 39 - Distribui¢io da Tenséio Normal na dir. x (o,)

6.6.2 Porosidade (Vazio)
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Foi implementado 0 mesmo modelo que para a inclusdo, porém, ao invés de
mudar as caracteristicas de um elemento, apagou-se esse elemento, no caso, o de

numero 957.

a) Cédigo do Programa

C*

C* pittman_dzf 2 large porosidade 1.ses
VIEW,0,0,1,0,
PT,1,0,0,0,
PT,2,0,6.35,0,
PT,3,27.94,6.35,0,
PT,4,50.8,9.86,0,
PT,5,50.8,0,0,
PT,6,27.94,82.55,0,
PT,7,27.94,0,0,
CRARC,1,3,4,6,76.2,
CRLINE,2,1,2,
CRLINE,3,2,3,
CRLINE 44,5,
CRLINE,S,5,7,
CRLINE,6,7,1,
CRLINE,7,7,3,
SF4CR,1,2,3,7,6,0,
SF4CR,2,1,4,5,7,0,

M SF,1,1,1,4,6,32,1,1,
M_SF,2,2,1,4,20,6,1,1,
EGROUP,1,PLANE2D,0,2,0,0,1,1,0,0,
MPROP,1,NUXY,0.33,
ELSYM,1,312,1,X,1,0,
ELSYM,1,624,1,Y,1,0,
RCONST,1,1,1,2,0.8,0,
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TIMES,0,100,1,

CURDEF,TIME, 1,1,0,0,1,1,

NL_PLOT,1,100,1,0,

MPCTYP, 1,1,

MPC, 1,0,1,0.02,23.80,0.04,27.33,0.06,29.64,0.08,31.40,0.1,32.83,0.12,34.05,0.
14,35.12,0.16,36.07,0.18,36.93,0.2,37.71,

NMERGE, 1,2576,1,0.01,0,0,0,

NCOMPRESS, 1,2576,

A_NONLINEAR,S,1,1,20,0.001,0,N,0,0,1E+10,0.001,0.1,0,1,0,0,

STRAIN OUT,1,1,0,0,1,1,

DND,7,UY,0,231,7,

DND,378,UY,0,595,7,

DND,352,UY,0,371,1,

DND,716,UY,0,735,1,

DND,232,UY,0,352,20,

DND,232,UX,0.1125,352,20,

DND,975,UY,0,1035,20,

DND,975,UX,0.1125,1035,20,

DND,934,UY,0,937,3,

DND,934,UX,0.1125,937,3,

DND,596,UY,0,599,3,

DND,596,UX,-0.1125,599,3,

DND,637,UY,0,717,20,

DND,637,UX,-0.1125,717,20,

DND,1286,UY,0,1346,20,

DND, 1286,UX,-0.1125,1346,20,

DND,1247,UY,0,1248,1,

DND,1247,UX,-0.1125,1248,1,

C* APAGA ELEMENTOS, NO CASO, O ELEMENTO 957

EDELETE,957,957,1,

C* R_NONLINEAR,
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b) Distribui¢do de Tensdes

Nas figuras 40 e 41 abaixo, a Distribui¢io de Tensdo de Von Mises e Normal
na dir. x do CP. O grafico da figura 40 representa a tensdo ao longo da linha de

centro. Nota-se a maior concentragio de tensdo na regifo da porosidade.

HL1n STRESS Stept108 =100

(kgf/mm?)
von Hlaes
47.34108
43.84808
LYY & O
| 1933688
4
Ixs.nad 36.86300
4, | e 3337088
|
.52z | y 29.07080
| 26.383808
25.96 ' | 22.89100
| 19.40008
|
19,3338 > -
[ .S
0.25 .78 X

Dietance

Figura 40 - Distribui¢iio da Tenséo de Von Mises ao longo do CP

WLTn STRESS Stepridé =1a@
(kaffmm?)
Siges_X
_53.523

43.300
45.877

40.954

4 36.631

Y 32.408
28.184

23.961

| 19,738

Figura 41 - Distribui¢iio da Tensio Normal na dir. x (c,)
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6.6.3 Entalhe

a) Codigo do Programa

Foi utilizado o mesmo c6digo para a porosidade, porém, foi apagado o
elemento 1, na superficie da Regido Central do CP, ao invés do 957, utilizando o
comando <EDELETE,1,1,1,>.

b) Distribui¢fo de Tenses

Da mesma maneira que nos itens anteriores, as figuras 42 e 43 abaixo mostram

a distribui¢do de Tensio de Von Mises e Normal na dir. x do CP.

Min STAESS Svepc180 w10

(kgffmm?)

Von Mised
46.67200
47.00500

3%.18008

33.31360
31.52788
37,580 foee e LTS TP ey [} 21,78(08

| 3,97488

y 1 201000
RURTTE SO e RuR,

16,38200

5.3%2 H

[FITH
1

-FRx i ' FRx

Figura 42 - Distribui¢fo da Tensfio de Von Mises ao longo do CP
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(kat/mm?)
Stgan_X
52,485

47.939
43,434
38.908
34.383
. 28.857
25,332
20.986

16.28%

Figura 43 - Distribui¢do da Tensio Normal na dir. x (c,)
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7 CONCLUSOES

Foram implementados trés exemplos de literatura com aplicag¢des de Elementos
Finitos e houve valida¢do dos resultados.

O Método dos Elementos Finitos é uma ferramenta analitica que possibilita
visualizar o efeito das solicitagdes e carregamentos nos materiais, bem como de suas
imperfei¢Ses, como inclusdes e porosidades, na distribuicio de tensdes e
deformagdes em diferentes pontos ao logo do corpo de prova.

Possibilita visualizar também o efeito de parimetros, como o coeficiente de
encruamento (n), e analisar o afinamento progressivo de uma chapa ensaiada (Corpo

de Prova), ponto de partida para andlise de estampabilidade de chapas.

Comentirios:

O FEM ¢ ainda pouco utilizado durante a Graduagio.

O software COSMOSM™ permite que modelos simples sejam facilmente
implementados, com resultados satisfatérios, principalmente qualitativos. Além
disso, a visualizagdo dos resultados, na forma grafica, colorida ¢ com animagdes,
facilita o entendimento dos conceitos.

Em disciplinas como Mecéanica dos Materiais, Resisténcia dos Materiais,
Conformagdo Mecénica dos Materiais e Modelamento Matemético, por exemplo,
acredita-se que alguns conceitos poderiam ser ensinados com a ajuda dos Elementos

Finitos.
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8 ANEXO

Solugio do Exemplo 1

Enunciado: Uma barra de ago para construgdo civil, contendo nervuras
longitudinais, foi ensaiada a tragfio, sendo colocado um extensdmetro de brago de
200 mm para a determinagdo do limite convencional de escoamento 0,2% e

apresentou os seguintes resultados (tabela 9 a seguir).

Tabela 9 - Forga x Deslocamento

Forca Deslocamento Forga Deslocamento
| et (mm) o (mm)
1 1490 0,050 13| 15360 0,650
2 3000 0,100 14| 15700 0,700
3 4420 0,150 15| 16100 0,750
4 5920 0,200 16| 16240 0,800
5 7450 0,250 17| 16500 0,850
6 8900 0,300 18| 16600 0,900
7| 10350 0,350 19| 16700 0,950
8 11900 0,400 20| 16800 1,000
9| 12800 0,450 21| 16820 1,050
10| 13750 0,500 22| 16850 1,100
11| 14400 0,550 23| 16900 1,150
12 15000 0,600 24| 17050 1,200

Os dados fornecidos foram:

Didmetro nominal da barra: 19 mm
Peso do segmento de barra ensaiado: 1,735 kg
Comprimento do segmento de barra ensaiado: 78,2 cm
Carga maxima atingida no ensaio: 20100 kgf

O problema pede para se calcular:
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Limite convencional de escoamento 0,2% uma vez que a barra nfio acusou
escoamento nitido.

Limite de resisténcia.

Limite de proporcionalidade aproximado.

Estimativa do modulo de elasticidade.

Alongamento em 10 didmetros, supondo que a distincia final, L, medida ap6s

o0 ensaio seja igual a 215,2 mm.

Solugdo: Para o cilculo dos quatro primeiros itens é necessario determinar a
secdo média da barra, através da densidade e do peso por unidade de comprimento,
pois o valor dado do didmetro nominal da barra nfio pode ser usado, porque a
amostra contém nervuras longitudinais, nfio tendo, portanto, didmetro constante.
Sendo a densidade do aco igual a 7,85 kgf/dm?, a se¢do média em mm? sera:

So=  (1,735/0,782)/0,00785

So= 282,62 mm?

a) Limite 0,2%. Construindo-se o grafico Forga x Deslocamento a seguir
(figura 44), e tragando-se a reta paralela a parte reta do grafico a partir do ponto de

0,4 mm de deslocamento, obtém-se pela intersec¢fo com a curva do grafico o valor
de Qo’z% =16700 kgf
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Figura 44 - Cilculo do Limite de Escoamento

Entdo, pode-se dividir esse valor da forga pela drea da segdo, encontrando o

valor de 692+ = 59,1 kgf/mm? para o Limite de Escoamento.

b) Limite de resisténcia.
or =(20100/282,62)
o = 71,1 kgfimm?

c¢) Limite de proporcionalidade aproximado.

O ponto onde termina a parte reta do grafico esta situado aproximadamente no

valor de
Qp = 11900 kgf
Portanto:

op =(11900/282,62)
op=42,1 kgf/mm?

d) Moédulo de Elasticidade
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E = (s / ¢) = (Q x brago do extensémetro) / (S, x deformago na carga Q)

Tomando-se a carga Q igual a 1490 kgf e 11900 kgf (dados retirados da tabela
fornecida), da parte reta do grafico, tem-se:

E,=(1490 x 200) / (282,62 x 0,050) = 21088,4

E> = (11900 x 200) / (282,62 x 0,400) = 21053,0

Portanto, E =21070,69563 kgf/mm?

e¢) Alongamento em 10 D.

O valor de L, = 19 x 10 = 190 mm, portanto

A =((215,2 - 190) / 190) x 100

A =13,26%
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